Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Rep ; 14(1): 8958, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637667

RESUMEN

Dominant vegetation in many ecosystems is an integral component of structure and habitat. In many drylands, native shrubs function as foundation species that benefit other plants and animals. However, invasive exotic plant species can comprise a significant proportion of the vegetation. In Central California drylands, the facilitative shrub Ephedra californica and the invasive Bromus rubens are widely dispersed and common. Using comprehensive survey data structured by shrub and open gaps for the region, we compared network structure with and without this native shrub canopy and with and without the invasive brome. The presence of the invasive brome profoundly shifted the network measure of centrality in the microsites structured by a shrub canopy (centrality scores increased from 4.3 under shrubs without brome to 6.3, i.e. a relative increase of 42%). This strongly suggests that plant species such as brome can undermine the positive and stabilizing effects of native foundation plant species provided by shrubs in drylands by changing the frequency that the remaining species connect to one another. The net proportion of positive and negative associations was consistent across all microsites (approximately 50% with a total of 14% non-random co-occurrences on average) suggesting that these plant-plant networks are rewired but not more negative. Maintaining resilience in biodiversity thus needs to capitalize on protecting native shrubs whilst also controlling invasive grass species particularly when associated with shrubs.


Asunto(s)
Bromus , Ecosistema , Plantas , Biodiversidad , Especies Introducidas , California
2.
PLoS One ; 19(3): e0299217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38536797

RESUMEN

Human experiences with nature are important for our culture, economy, and health. Anthropogenically-driven climate change is causing widespread shifts in biodiversity and resident urban wildlife are no exception. We modelled over 2,000 animal species to predict how climate change will impact terrestrial wildlife within 60 Canadian and American cities. We found evidence of an impending great urban shift where thousands of species will disappear across the selected cities, being replaced by new species, or not replaced at all. Effects were largely species-specific, with the most negatively impacted taxa being amphibians, canines, and loons. These predicted shifts were consistent across scenarios of greenhouse gas emissions, but our results show that the severity of change will be defined by our action or inaction to mitigate climate change. An impending massive shift in urban wildlife will impact the cultural experiences of human residents, the delivery of ecosystem services, and our relationship with nature.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Perros , Animales Salvajes , Biodiversidad , Canadá , Ciudades
3.
PLoS Comput Biol ; 18(12): e1010725, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36520687

RESUMEN

Cities are growing in density and coverage globally, increasing the value of green spaces for human health and well-being. Understanding the interactions between people and green spaces is also critical for biological conservation and sustainable development. However, quantifying green space use is particularly challenging. We used an activity index of anonymized GPS data from smart devices provided by Mapbox (www.mapbox.com) to characterize human activity in green spaces in the Greater Toronto Area, Canada. The goals of our study were to describe i) a methodological example of how anonymized GPS data could be used for human-nature research and ii) associations between park features and human activity. We describe some of the challenges and solutions with using this activity index, especially in the context of green spaces and biodiversity monitoring. We found the activity index was strongly correlated with visitation records (i.e., park reservations) and that these data are useful to identify high or low-usage areas within green spaces. Parks with a more extensive trail network typically experienced higher visitation rates and a substantial proportion of activity remained on trails. We identified certain land covers that were more frequently associated with human presence, such as rock formations, and find a relationship between human activity and tree composition. Our study demonstrates that anonymized GPS data from smart devices are a powerful tool for spatially quantifying human activity in green spaces. These could help to minimize trade-offs in the management of green spaces for human use and biological conservation will continue to be a significant challenge over the coming decades because of accelerating urbanization coupled with population growth. Importantly, we include a series of recommendations when using activity indexes for managing green spaces that can assist with biomonitoring and supporting sustainable human use.


Asunto(s)
Parques Recreativos , Teléfono Inteligente , Humanos , Urbanización , Ciudades , Actividades Humanas
4.
Sci Rep ; 12(1): 18005, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289265

RESUMEN

Climate change profoundly influences plants and animals in all ecosystems including drylands such as semi-arid and arid scrublands and grasslands. At the peak of an extended megadrought in the Southwestern USA, the microclimatic refuges provided by foundation plant species and through associated vegetation were examined. Shrubs and open interstitial spaces without a canopy but with annual plants were instrumented in 2016 and the wet season of 2017 in the central drylands of California. In both years and all seasons tested, vegetation significantly mediated fine-scale near-surface air temperature and relative soil moisture content-defined here as microclimate. The foundation species with other vegetation provided the most significant thermal refuge potential capacity for other plants and animals, but there was variation by growing season. Soil moisture content was frequently increased by the direct canopy effects of shrubs. This evidence suggests that the climate many plants and animals experience, even during an extended megadrought, is mediated by the local plants in highly impacted drylands with anthropogenic disturbance and significant water-induced challenges. Foundation species such as shrubs in drylands function as a potent starting point in examining the ecological relevance of climate at scales germane to many species locally. An ecological framework for climate resilience using shrubs will improve conservation and restoration planning in drylands.


Asunto(s)
Ecosistema , Microclima , Animales , Plantas , Cambio Climático , Suelo , Agua
5.
Am J Primatol ; 84(9): e23426, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35942562

RESUMEN

Dispersal between social groups reduces the risk of inbreeding and can improve individuals' reproductive opportunities. However, this movement has costs, such as increased risk of predation and starvation, loss of allies and kin support, and increased aggression associated with entering the new group. Dispersal strategies, such as the timing of movement and decisions on whether to transfer alone or in parallel with a peer, involve different costs and benefits. We used demographic, behavioral, hormonal, and ecological data to examine the causes and consequences of 36 dispersal events from 29 male vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda. Adult males' secondary dispersal coincided with the conception season in females, and males improved their potential access to females by moving to groups with higher female-to-male sex ratios and/or by increasing their dominance rank. Males that dispersed with a peer had lower fecal glucocorticoid and androgen metabolite levels than lone dispersers. Subadult males were not more likely to engage in parallel dispersals compared to adult males. Dispersal was also used as a mechanism to avoid inbreeding, but changes in hormone levels did not seem to be a trigger of dispersal in our population. Our findings illustrate the complex individual strategies used during dispersal, how many factors can influence movement decisions, as well as the value of dominance and hormone analyses for understanding these strategies.


Asunto(s)
Endogamia , Reproducción , Agresión , Animales , Chlorocebus aethiops , Femenino , Hormonas , Masculino , Razón de Masculinidad
7.
Sci Data ; 9(1): 318, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710905

RESUMEN

In recent decades, lakes have experienced unprecedented ice loss with widespread ramifications for winter ecological processes. The rapid loss of ice, resurgence of winter biology, and proliferation of remote sensing technologies, presents a unique opportunity to integrate disciplines to further understand the broad spatial and temporal patterns in ice loss and its consequences. Here, we summarize ice phenology records for 78 lakes in 12 countries across North America, Europe, and Asia to permit the inclusion and harmonization of in situ ice phenology observations in future interdisciplinary studies. These ice records represent some of the longest climate observations directly collected by people. We highlight the importance of applying the same definition of ice-on and ice-off within a lake across the time-series, regardless of how the ice is observed, to broaden our understanding of ice loss across vast spatial and temporal scales.

8.
Sci Data ; 9(1): 209, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577900

RESUMEN

Grazing by wild and domesticated grazers occurs within many terrestrial ecosystems worldwide, with positive and negative impacts on biodiversity. Management of grazed lands in support of biological conservation could benefit from a compiled dataset of animal biodiversity within and adjacent to grazed sites. In this database, we have assembled data from the peer-reviewed literature that included all forms of grazing, co-occurring species, and site information. We reviewed 3,489 published articles and found 245 studies in 41 countries that surveyed animal biodiversity co-occurring with grazers. We extracted 16,105 observations of animal surveys for over 1,200 species in all terrestrial ecosystems and on all continents except Antarctica. We then compiled 28 different grazing variables that focus on management systems, assemblages of grazer species, ecosystem characteristics, and survey type. Our database provides the most comprehensive summary of animal biodiversity patterns that co-occur with wild and domesticated grazers. This database could be used in future conservation initiatives and grazing management to enhance the prolonged maintenance of ecosystems and ecosystem services.


Asunto(s)
Biodiversidad , Bases de Datos Factuales , Ecosistema , Animales , Regiones Antárticas
9.
Ecol Evol ; 11(8): 3616-3624, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33898014

RESUMEN

Teaching ecology effectively and experientially has become more challenging for at least two reasons today. Most experiences of our students are urban, and we now face the near immediate and continuing need to deliver courses (either partially or wholly) online because of COVID-19. Therefore, providing a learning experience that connects students to their environment within an ecological framework remains crucial and perhaps therapeutic to mental health. Here, we describe how prior to the pandemic we adapted our field-based laboratories to include data collection, analysis, and interpretation, along with the development of a citizen-science approach for online delivery. This design is simple to implement, does not require extensive work, and maintains the veracity of original learning outcomes. Collaboration online following field data collection in ecology courses within the context of cities offers further options to adapt to student experience levels, resource availability, and accessibility, as well as bringing instructors and students together to build an open well-curated data set that can be used in ecology courses where no laboratories are available. Finally, it promotes an open collaboration among ecology instructors that can drive lasting conversations about ecology curriculum.

10.
Sci Total Environ ; 769: 145161, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486167

RESUMEN

Extreme climate events are predicted to increase in the future, which will have significant effects on insect biodiversity. Research into this area has been rapidly expanding, but knowledge gaps still exist. We conducted a review of the literature to provide a synthesis of extreme climate events on insects and identify future areas of research. In our review, we asked the following questions: 1) What are the direct and indirect mechanisms that extreme climate events affect individual insects? 2) What are the effects of extreme climate events on insect populations and demography? 3) What are the implications of the extreme climate events effects on insect communities? Drought was among the most frequently described type of extreme climate event affecting insects, as well as the effects of temperature extremes and extreme temperature variation. Our review explores the factors that determine the sensitivity or resilience to climate extremes for individuals, populations, and communities. We also identify areas of future research to better understand the role of extreme climate events on insects including effects on non-trophic interactions, alteration of population dynamics, and mediation of the functional the trait set of communities. Many insect species are under threat from global change and extreme climate events are a contributing factor. Biologists and policy makers should consider the role of extreme events in their work to mitigate the loss of biodiversity and delivery of ecosystem services by insects.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biodiversidad , Clima , Humanos , Insectos
11.
Sci Data ; 7(1): 310, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963248

RESUMEN

Measures of chlorophyll represent the algal biomass in freshwater lakes that is often used by managers as a proxy for water quality and lake productivity. However, chlorophyll concentrations in lakes are dependent on many interacting factors, including nutrient inputs, mixing regime, lake depth, climate, and anthropogenic activities within the watershed. Therefore, integrating a broad scale dataset of lake physical, chemical, and biological characteristics can help elucidate the response of freshwater ecosystems to global change. We synthesized a database of measured chlorophyll a (chla) values, associated water chemistry variables, and lake morphometric characteristics for 11,959 freshwater lakes distributed across 72 countries. Data were collected based on a systematic review examining 3322 published manuscripts that measured lake chla, and we supplemented these data with online repositories such as The Knowledge Network for Biocomplexity, Dryad, and Pangaea. This publicly available database can be used to improve our understanding of how chlorophyll levels respond to global environmental change and provide baseline comparisons for environmental managers responsible for maintaining water quality in lakes.


Asunto(s)
Clorofila A/análisis , Lagos/química , Calidad del Agua , Agua/química , Biomasa , Internacionalidad
12.
Ecol Lett ; 23(8): 1298-1309, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32369874

RESUMEN

Anthropogenic disturbance has generated a significant loss of biodiversity worldwide and grazing by domestic herbivores is a contributing disturbance. Although the effects of grazing on plants are commonly explored, here we address the potential multi-trophic effects on animal biodiversity (e.g. herbivores, pollinators and predators). We conducted a meta-analysis on 109 independent studies that tested the response of animals or plants to livestock grazing relative to livestock excluded. Across all animals, livestock exclusion increased abundance and diversity, but these effects were greatest for trophic levels directly dependent on plants, such as herbivores and pollinators. Detritivores were the only trophic level whose abundance decreased with livestock exclusion. We also found that the number of years since livestock was excluded influenced the community and that the effects of grazer exclusion on animal diversity were strongest in temperate climates. These findings synthesise the effects of livestock grazing beyond plants and demonstrate the indirect impacts of livestock grazing on multiple trophic levels in the animal community. We identified the potentially long-term impacts that livestock grazing can have on lower trophic levels and consequences for biological conservation. We also highlight the potentially inevitable cost to global biodiversity from livestock grazing that must be balanced against socio-economic benefits.


Asunto(s)
Biodiversidad , Ganado , Animales , Ecosistema , Herbivoria , Estado Nutricional , Plantas
13.
Glob Chang Biol ; 26(5): 2867-2877, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32196868

RESUMEN

Climate change is expected to have significant and complex impacts on ecological communities. In addition to direct effects of climate on species, there can also be indirect effects through an intermediary species, such as in host-plant interactions. Indirect effects are expected to be more pronounced in alpine environments because these ecosystems are sensitive to temperature changes and there are limited areas for migration of both species (i.e. closed systems), and because of simpler trophic interactions. We tested the hypothesis that climate change will reduce the range of an alpine butterfly (Parnassius smintheus) because of indirect effects through its host plant (Sedum sp.). To test for direct and indirect effects, we used the simulations of climate change to assess the distribution of P. smintheus with and without Sedum sp. We also compared the projected ranges of P. smintheus to four other butterfly species that are found in the alpine, but that are generalists feeding on many plant genera. We found that P. smintheus gained distributional area in climate-only models, but these gains were significantly reduced with the inclusion of Sedum sp. and in dry-climate scenarios which resulted in a reduction in net area. When compared to the more generalist butterfly species, P. smintheus exhibited the largest loss in suitable habitat. Our findings support the importance of including indirect effects in modelling species distributions in response to climate change. We highlight the potentially large and still neglected impacts climate change can have on the trophic structure of communities, which can lead to significant losses of biodiversity. In the future, communities will continue to favour species that are generalists as climate change induces asynchronies in the migration of species.


Asunto(s)
Mariposas Diurnas , Animales , Biodiversidad , Cambio Climático , Ecosistema , Plantas
14.
Ecol Evol ; 10(3): 1098-1105, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32076500

RESUMEN

The open source and free programming language R is a phenomenal mechanism to address a multiplicity of challenges in ecology and evolution. It is also a complex ecosystem because of the diversity of solutions available to the analyst.Packages for R enhance and specialize the capacity to explore both niche data/experiments and more common needs. However, the paradox of choice or how we select between many seemingly similar options can be overwhelming and lead to different potential outcomes.There is extensive choice in ecology and evolution between packages for both fundamental statistics and for more specialized domain-level analyses.Here, we provide a checklist to inform these decisions based on the principles of resilience, need, and integration with scientific workflows for evidence.It is important to explore choices in any analytical coding environment-not just R-for solutions to challenges in ecology and evolution, and document this process because it advances reproducible science, promotes a deeper understand of the scientific evidence, and ensures that the outcomes are correct, representative, and robust.

15.
PLoS One ; 14(4): e0215988, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31017967

RESUMEN

The mechanisms supporting positive ecological interactions are important. Foundation species can structure desert biodiversity by facilitating seedbanks of annual plants, but the direct and indirect mechanisms of shrub effects on seedbank have not been experimentally decoupled. We conducted the first test of shrubs increasing seedbank densities through direct effects on the seedbank (i.e. shrub seed-trapping, animal-mediated dispersal) and indirect effects by facilitating the annual plant community (i.e. seed deposition, annual seed-trapping). Two distinct desert ecosystems were used to contrast transient seedbank densities in shrub and open microsites by manipulating annual plant density and the presence of the persistent seedbank. We measured transient seedbank densities at the end of the growing season by collecting soil samples and extracting seeds from each respective treatment. Transient seedbank densities were greatest in shrub canopies and with relatively higher annual plant densities. The persistent seedbank contributed to transient seedbank densities only in one desert and in the open microsite. Shrubs indirectly increased seedbank densities by facilitation the seed production of the annual plants. Therefore, shrubs are increasing seedbank independently of the annual plant community, likely through trapping effects, and dependently by facilitating seed production of the annuals. These findings provide evidence for a previously undescribed mechanism that supports annual seedbanks and thus desert biodiversity. We also identify shrubs as being significant drivers of desert plant communities and emphasize the need to consider multiple mechanisms to improve our ability to predict the response of ecosystems to change.


Asunto(s)
Clima Desértico , Plantas , Banco de Semillas , Biodiversidad , California , Modelos Lineales , Especificidad de la Especie
16.
New Phytol ; 217(1): 140-150, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28944475

RESUMEN

Environmental extremes resulting from a changing climate can have profound implications for plant interactions in desert communities. Positive interactions can buffer plant communities from abiotic stress and consumer pressure caused by climatic extremes, but limited research has explored this empirically. We tested the hypothesis that the mechanism of shrub facilitation on an annual plant community can change with precipitation extremes in deserts. During years of extreme drought and above-average rainfall in a desert, we measured plant interactions and biomass while manipulating a soil moisture gradient and reducing consumer pressure. Shrubs facilitated the annual plant community at all levels of soil moisture through reductions in microclimatic stress in both years and herbivore protection in the wet year only. Shrub facilitation and the high rainfall year contributed to the dominance of a competitive annual species in the plant community. Precipitation patterns in deserts determine the magnitude and type of facilitation mechanisms. Moreover, shrub facilitation mediates the interspecific competition within the associated annual community between years with different rainfall amounts. Examining multiple drivers during extreme climate events is a challenging area of research, but it is a necessary consideration given forecasts predicting that these events will increase in frequency and magnitude.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Plantas , Estrés Fisiológico , Biomasa , Bromus/crecimiento & desarrollo , Bromus/fisiología , California , Cambio Climático , Sequías , Ambiente , Herbivoria , Desarrollo de la Planta , Lluvia , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA